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Research Goal

To apply our case study method to a global TTL
study to improve understanding of processes

(microphysics, convection, waves) that control TTL
H,O and cirrus cloud formation



Method

(modified version of Jensen and Pfister 2004, Bergman et al. 2012, Ueyama et al. 2014)

|. Calculate 60-day backward diabatic trajectories from
every 2° lat x 2° lon grid points in the tropics (20°S -
20°N) at 371 K (~100 hPa) level ending at | Feb 2007
using ERA-Interim temperatures and winds

a sample of the trajectories and their temperatures
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Method

(modified version of Jensen and Pfister 2004, Bergman et al. 2012, Ueyama et al. 2014)

2. Use ID (height) time-dependent microphysical model to

simulate clouds along each parcel trajectory and calculate
their time-integrated effects on H,O mixing ratio

parcel H>O curtain
trajectory ~‘_(|n|t|aI|zed with MLS measurements at time = O)
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Method

(modified version of Jensen and Pfister 2004, Bergman et al. 2012, Ueyama et al. 2014)

2. Use ID (height) time-dependent microphysical model to

simulate clouds along each parcel trajectory and calculate
their time-integrated effects on H,O mixing ratio

parcel H>O curtain

trajectory ‘~‘_(|n|t|aI|zed with MLS measurements at time = 0)
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Method

(modified version of Jensen and Pfister 2004, Bergman et al. 2012, Ueyama et al. 2014)

3. Compare the simulated H,O mixing ratios on the final day
of the trajectories (MLS averaging kernel applied) with
corresponding MLS measurements at 100 hPa

. final H.O
parcel H,O curtain of this parcel
trajectory --§(|n|t|aI|zed with MLS measurements at time = O) ~| ppmv
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100 hPa H0
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model (mlcro + conv + waves) MLS
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* reasonable agreement with MLS
(r = 0.62, RMSE = 0.50 ppmv)



100 hPa H0
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model (mlcro + conv + waves) MLS

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4 6.0

reasonable agreement with MLS

(r = 0.62, RMSE = 0.50 ppmv)
—20% model dry bias

- T too cold? X

- too little convective influence? X
- missing convective injection of ice? X
- too many ice nuclei? X

- lack of vertical mixing?
- heating rate variability?




100 hPa H0

model (mlcro + conv + waves) micro + conv + no waves
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Impact on 100 hPa H,O

* dehydration pattern by waves

resembles CPT difference pattern
® convection moistens everywhere,

except over cold T region in
western Pacific

* moistening by microphysics due to
supersaturation and ice sublimation

convection
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Cloud occurrence frequency
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» Model produces ~10% more clouds than CALIPSO
below ~100 hPa; excellent agreement in mid-upper TTL



Cloud occurrence frequency
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» Model produces ~10% more clouds than CALIPSO
below ~100 hPa; excellent agreement in mid-upper TTL



Cloud occurrence frequency
|6 — 18 km, Jan 2007

model (mlcro + conv + waves)

CALIPSO
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e excellent agreement with CALIPSO

(r =0.79,RMSE = 5.7%)
 ~10% cloud occurrence (20S-20N
mean)
e discrepancy may be due to

CALIPSO sampling issues and
uncertainty in cloud top heights
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Cloud occurrence frequency

ZOS 20N mean, Jan 2007
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» Convection and waves both increase cloud occurrence
throughout the TTL



Impact on cloud occurrence

20S - 20N mean, Jan 2007
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* enhancement by convection

dominates in the lower TTL (10-20%)

e waves and convection increase cloud
occurrence by ~5% in 16-18 km layer

16 - 18 km




Summary

® Simulation of wintertime TTL (100 hPa) H2O with microphysics,
convection and waves improves agreement with MLS, but is still 20% too
dry

- role of mixing! temporal variability of heating rates?
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® Simulated cloud occurrence frequency in the mid-upper TTL agrees

remarkably well with CALIPSO estimates (~10% frequency, r = 0.8 spatial
correlation), with equal contributions of ~5% from waves and convection



Summary

Simulation of wintertime TTL (100 hPa) H,O with microphysics,
convection and waves improves agreement with MLS, but is still 20% too
dry

- role of mixing! temporal variability of heating rates?

Impacts on 100 hPa H,O:

- waves —0.5 ppmv

- convection +0.6 ppmv

- microphysics +0.7 ppmyv

Simulated cloud occurrence frequency in the mid-upper TTL agrees

remarkably well with CALIPSO estimates (~10% frequency, r = 0.8 spatial
correlation), with equal contributions of ~5% from waves and convection

The model overestimates cloud occurrence by 10% in the lower TTL
where convection enhances tropical mean frequencies by up to 20%
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Cloud occurrence frequency
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H2O (color), T (contours) at 100 hPa
Dec-Jan-Feb 2006-07
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|00 hPa H,O
(I Feb 2007)

min saturation mixing ratio
(based on Lagranglan Dry Pomt)
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» LDP of the trajectories (no cloud simulation)
underestimates T TL humidity by ~45%



ERA-Interim data (DJF 2006-07) with
Kim and Alexander 2013 wave scheme

cold point temperature (CPT) CPT difference
with waves (waves — no waves)

» Waves decrease CPT everywhere in the tropics
(min —0.8 K over Indonesia)



CPT difference

(Dec-Jan-Feb 2006-07)

mean difference (ERA — radiosonde) = +0.34 K
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potential temperature (K)

Convective cloud top distribution
370 K (100 hPa)
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pressure altitude (km)

Yang et al. (2010) + MERRA heating rates
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pressure altitude (km)

cloud occurrence frequency

(20S-20N, Jan 2007, regional means)
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vertical profile of
tropical (20S-20N) mean H;O
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Sensitivity test results

simulation types

reduced aerosols

100 hPa H,O
difference (ppmv)

comments

fewer ice crystals grow faster and

—0.09
(heterogeneous nucleation) fall out
convection +/—0.] (within uncertainty of CloudSat and
. CALIPSO measurements)
parameters
hlgh clouds +0.17 dehydrate over western Pacific
(top >370K)
30-d traiectori +0.14 some parcels have not gone through

-d trajectories - the cold point in 30-d

|arge-sca|e upwe”ing +0.09 weaker ascent in wet regions vs. less

(zonally-asymm heating rates)

time spent in dry regions




